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Abstract
We investigate the wetting of planar, nonselective solid substrates by symmetric
binary mixtures where the attraction strength between like molecules of
components A and B is the same, that is εAA = εBB < 0. Mixture properties
come about by varying |εAB| � |εAA|, that is by varying the attraction between
a pair of unlike molecules. By means of mean-field lattice density functional
calculations we observe a rich wetting behaviour as a result of the interplay
between εAB and the attraction of fluid molecules by the solid substrate εW.
In accord with previous studies we observe complete wetting only above the
critical end point if the bulk mixture exhibits a moderate to weak tendency
to liquid–liquid phase separation even for relatively strong fluid–substrate
attraction. However, in this case layering transitions may arise below the
temperature of the critical end point. For strongly phase separating mixtures
complete wetting is observed for all temperatures T � 0 along the line of
discontinuous phase transitions in the bulk.

1. Introduction

The study of wetting phenomena has a long history going back all the way to the works by
Young [1] and later on by Dupré [2], who analysed the interaction of fluid with solid surfaces
from a macroscopic perspective. In their analyses the contact angle θ of a sessile droplet on
a solid surface was linked to various interfacial tensions such that if θ = 0 one has complete
wetting, that is a macroscopic film of liquid spreading over the entire substrate. If, on the
other hand, one is dealing with stable droplets, 0 < θ < π , which is the case usually referred
to as partial wetting. Since then a lot of experimental and theoretical work has been devoted
to studying the wetting of solid surfaces by fluid matter [3–8]. Wetting is ubiquitous and
important in a variety of contexts. For example, the way in which fluid molecules interact with
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solids ultimately determines how paints stick to surfaces or how stains can be removed from
fabric by detergents [9].

One of the first attempts to classify systems with respect to their wetting behaviour is
the study by Dash, who analysed experimental sorption isotherms of physisorbed gases [10].
However, it was not until the seminal papers by Cahn [11] and Ebner and Saam [12, 13]
that wetting phenomena were perceived as a novel class of phase transitions driven by the
symmetry-breaking presence of a solid surface. Cahn has given a lucid argument in which he
expresses cos θ ∝ tβ−2ν , where t = (Tc − T )/Tc (Tc bulk gas–liquid critical temperature); β

and ν are critical exponents associated with the density difference between coexisting liquids
and gases and the range of intermolecular correlations, respectively [11]. Since β − 2ν < 0
for two- and three-dimensional systems [14] a wetting temperature Tw < Tc must exist where
θ = 0 such that we have complete wetting for all T � Tw.

While Cahn’s argument is correct for short-range fluid–substrate potentials [6], it may
be wrong for long-range potentials, as pointed out by Nightingale and Indekeu [15] and
corroborated later by Ebner and Saam [16]. The importance of the range of fluid–substrate
interactions and its relation to the order of the wetting transition was studied systematically in
a number of papers [17–20]. For example, long-range fluid–substrate interactions are crucial
for prewetting, that is coexistence between films of different but microscopic thicknesses since
they lower the so-called roughening temperature below Tw (see also section 5.1) [21].

Since then it was realized that even the formation of individual layers of physisorbed
molecules may constitute a discontinuous (i.e., first-order) phase transition. These so-called
layering transitions were investigated by Pandit et al [22] who built on the earlier work by
Dash [10]. The relation between wetting and layering transitions was investigated by Binder
and Landau [23], who employed Monte Carlo simulations of Ising magnets on a simple-cubic
lattice. These latter authors also give an account of the limitations of models with short-range
interactions. In particular, they show that layering transitions and wetting, which are of prime
interest in this study, are captured in a qualitatively correct way by such models.

While most of the work on wetting still deals with pure fluids, a considerable body of
literature has addressed the issue of binary mixtures and their interaction with solid substrates.
Of these papers, the larger portion focuses on mixtures confined by solid substrates to spaces
of nanoscopic dimension(s) where wetting is subdominant to confinement-controlled phase
transitions [24–27]. Wetting of solid surfaces by binary mixtures has, however, been studied
by Patrykiejew et al [28] by means of lattice Monte Carlo simulations of associating binary
mixtures. Again, these authors employ a long-range fluid–substrate potential. Monte Carlo
simulations have also been employed by Kierlik et al, who concentrate on prewetting of a
selective solid surface by a symmetric binary mixture where like particles of either component
are solely distinguished by their ‘colour’ [29], that is the attraction between a pair of like
molecules of both components is equally strong.

Experimentally, prewetting by the binary mixture methanol–cyclohexanehas been studied
by Kellay et al [30], whereas Beysens and Estevé [31] focus on the growth of wetting
layers in the mixture H2O–2,6-lutidine by means of light scattering techniques. Plech et al
[32–34] employ x-ray reflectivity and diffuse scattering under grazing angles to investigate
binary organic mixtures wetting silica and fused-silica surfaces. A particularly interesting
experimental study is the work by Sallami et al [35], who present evidence for layering
transitions in water–2,5-dimethylpyridine (2,5-DMP) mixtures. If one plots the relative
adsorption of 2,5-DMP as a function of the mole fraction of the organic compound the
resulting adsorption isotherms exhibit discontinuous ‘jumps’ separated by nearly flat, plateau-
like regions. These ‘jumps’ are fingerprints of layering transitions at the solid surface. The
relevance of the study by Sallami et al to the present work lies in the fact that the former authors
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argue that intermolecular interactions causing the layering transitions in the experimental
system may be short-range.

Theoretically, wetting of solid substrates by symmetric binary mixtures has been studied
in the past by a number of research groups. Most of these earlier studies are, however,
concerned with wetting near liquid–liquid coexistence in the bulk [19, 28, 29, 36–38].
Gas adsorption and wetting behaviour of binary mixtures near gas–liquid coexistence have
been analysed by Hadjiagapiou and Evans by means of a (continuous) mean-field density
functional approach [39]. Later Schmid and Wilding used Ginzburg–Landau theory and
Monte Carlo simulations to investigate the wetting behaviour of binary mixtures at gas–liquid
coexistence [40]. More recently, Silbermann et al [41] employed a mean-field lattice model
similar to the one on which the present study is based to investigate the wetting behaviour of
binary wetting films.

In all three studies [39–41] intermolecular interactions are governed by short-range
potentials. More specifically, Hadjiagapiou and Evans [39] base their work on the Berthelot
mixing rule for the interaction between unlike molecules of both species. Moreover, their
mixtures are asymmetric in the sense that the interaction between a pair of like molecules of
one mixture component differs from that of the other one. As the temperature changes the
morphology of the adsorbed films changes and transitions from partial to complete wetting are
found (see figure 3 in [39]). Focusing on mixtures with a moderate tendency towards liquid–
liquid phase separation, Schmid and Wilding investigate wetting phenomena as a function of
the fluid–substrate attraction εW. In their study Tw always exceeds the critical end point (cep)
at which critical mixed and demixed liquid phases coexist with a noncritical gaseous phase.
Silbermann et al [41] showed how the character of the wetting film (i.e.,mixed versus demixed)
changes with substrate selectivity (i.e., the energetic preference of adsorption of molecules of
one species by the solid substrate). However, on account of the high dimension of the parameter
space on which their model is defined, the study by Silbermann et al is restricted to a rather
narrow range of system parameters.

In contrast, the present study aims at spanning a much wider range of model parameters.
A focal point here is the competition between the tendency towards decomposition of bulk
mixtures and (nonselective) adsorption of mixture molecules by the solid substrate. Therefore
this work extends the earlier study of Wilding and Schmid in a systematic way by also varying
the attraction strength between unlike fluid molecules εAB in addition to εW. As we shall
demonstrate below, the interplay between both parameters is of central importance for the
phase behaviour and composition of wetting films. For example, as a result of this interplay
we observe wetting at all temperatures T � 0 for which we have coexisting phases in the
bulk. Our results offer the possibility to comprehend why layering may occur for T < Tcep

but complete wetting will not.
The remainder of this paper is organized as follows. In section 2 we introduce our

model and a mean-field approximation for the intrinsic free-energy functional on which all
calculations in this work are predicated. Some elementary thermodynamic concepts are
introduced in section 3. Section 4 is devoted to theoretical concepts central to complete
wetting. Section 5 is given to a presentation of our results. Our findings are summarized and
put into perspective in the concluding section 6.

2. Model and mean-field approximation

2.1. Nearest-neighbour lattice gas

We consider a binary (A–B) mixture on a simple cubic lattice of N = nz sites, whose lattice
constant is �. The position of a fluid molecule on this lattice is specified by a pair of integers
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(k, l) where 1 � k � n labels the position in an x–y plane and 1 � l � z determines the
position of that plane along the z-axis. A specific site may be occupied either by a molecule
of species A or B, or it may be altogether empty. To describe individual configurations on the
lattice we introduce a matrix s of occupation numbers such that

skl =




+1, site occupied by molecule of component A

0, empty site

−1, site occupied by molecule of component B.

(2.1)

For given s the total number of sites occupied by molecules of species A or B is NA(s) or
NB(s), respectively, for which explicit expressions are derived in (2.2a) and (2.2b) of an earlier
paper by Woywod and Schoen [27]. Based upon these expressions Woywod and Schoen also
calculated the total number of A–A [NAA(s)], B–B [NBB(s)], and A–B nearest-neighbour pairs
[NAB(s)] on the lattice (see (2.6a), (2.6b), and (2.6c) in [27]).

We formally confine the mixture by two impenetrable solid substrates located at l = 0 and
l = z + 1 and introduce the number of molecules of type A and B at those substrates, NAW(s)
and B, NBW(s), respectively (see (2.4) and (2.5) of [27]). In what follows we take z = 40–90,
which is sufficiently large so that adsorption of molecules at one solid surface is not perturbed
by the presence of the other.

In addition, we assume all interactions (i.e., fluid–fluid and fluid–substrate) to be pairwise
additive, and model them according to square-well potentials where the width of the attractive
well is set equal to the diameter σ of a fluid molecule (taking the same value of σ for both
species). Hence, we restrict ourselves exclusively to nearest-neighbour attractions, that is
� = σ . The restriction to a maximum occupation of each site by at most one molecule
(see (2.1)) accounts for the infinitely hard core imposed by the square-well potential.

The energy function (i.e., the Hamiltonian) governing our system can then be cast as

H(s; µ̃) = εAA[NAA(s) + NBB(s)] + εAB NAB(s) + εW[NAW(s) + NBW(s)]

− µ̃[NA(s) + NB(s)] (2.2)

where µ̃ is the chemical potential which we deliberately choose to be equal for both mixture
components to limit the dimension of the parameter space on which our model is defined, and

εAA = εBB � εAB < 0 (2.3)

εW = εAW = εBW < 0. (2.4)

On account of (2.3), molecules are distinguished solely by their ‘colour’ such that only the
attraction between a pair of differently coloured molecules differs from that between a pair of
equally coloured ones. This model mixture is usually referred to as ‘symmetric’ [42]. If the
second equality holds in (2.3), the symmetric binary mixture degenerates into a pure (i.e., one-
component) fluid. As in our previous paper [27], we assume the walls to be ‘nonselective’,
that is, from a purely energetic perspective the adsorption of a molecule of species A is
indistinguishable from that of a molecule of species B (see (2.4)).

2.2. Lattice-gas Hamiltonian in mean-field approximation

Based upon these considerations we may introduce the partition function � in the grand
canonical ensemble via [42]

�(N , T, µ̃) =
∑
{s}

exp[−H(s; µ̃)/kBT ] ≡ exp(−	/kBT ) (2.5)

where 	(N , T, µ) is the grand potential. To proceed we introduce a mean-field approximation
for the Hamiltonian specified in (2.2). It consists of assuming that within each lattice plane l
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parallel to the solid substrates the occupation number at each lattice site can be replaced by an
average occupation number for the entire plane. On account of the symmetry-breaking nature
of the solid substrate these average occupation numbers will generally vary between planes,
that is they will change with l. In this sense our model accounts for correlations in the direction
perpendicular to the substrate planes but ignores these correlations altogether within each of
the z lattice planes parallel to the substrates. Hence, we introduce the total local density

ρl = ρA
l + ρB

l = 1

n

n∑
k=1

s2
kl ≡ nA

l + nB
l

n
≡ nl

n
(2.6)

where 0 � ρl � 1 in units of σ 3. As a second order parameter we define the local ‘miscibility’
ml via

mlρl = ρA
l − ρB

l = 1

n

n∑
k=1

skl (2.7)

as a quantitative measure of the degree of local decomposition of the binary mixture such that
−1 � ml � 1. For example, if at plane l the fluid consists of pure component A, (2.7) implies
ml = 1. Likewise, if at plane l pure component B is present, ml = −1. If, on the other hand,
we have perfect miscibility across plane l, ρA

l = ρB
l (subject to (2.6) and the constraint ρl � 1)

and hence ml = 0. In other words, the phase behaviour of the binary mixture is characterized
by two sets of local order parameters, namely ρ ≡ {ρ1, . . . , ρz} and m ≡ {m1, . . . , mz},
where we note in passing that both ρl and ml are continuous only in the thermodynamic limit
n → ∞.

Mathematically speaking, the mean-field approximation consists of mapping the n × z
occupation-number matrix s onto the z-dimensional vectors ρ and m. Hence, we replace
H (s; µ̃) by its mean-field analogue Hmf(ρ,m; µ̃). An explicit expression for Hmf is derived
in appendix A of the paper by Silbermann et al [41]. To derive the mean-field analogue of (2.5)
we follow these authors, who argued that in mean-field approximation one has the expression

ω(T, µ̃) = 	mf

N = −kBT

N ln �(ρ,m) +
Hmf (ρ,m; µ̃)

N (2.8)

for the grand-potential density ω = 	/N . Explicit forms for both the combinatorial factor �

and the grand-potential density ω are derived in appendix B of [41]. From the final expression
for ω(T, µ̃) given in that paper we obtain for the special case of a symmetric mixture interacting
with nonselective solid surfaces the equation

ω(T, µ̃)|ρ,m = kBT

z

z∑
l=1

[ρl ln ρl + (1 − ρl) ln(1 − ρl) − ρl ln 2]

+
kBT

2z

z∑
l=1

ρl [(1 + ml) ln(1 + ml) + (1 − ml) ln(1 − ml)]

+
εAA

4z

z∑
l=1

[ρlρl−1(1 + mlml−1) + 4ρ2
l (1 + m2

l ) + ρlρl+1(1 + mlml+1)]

+
εAB

4z

z∑
l=1

[ρlρl−1(1 − mlml−1) + 4ρ2
l (1 − m2

l ) + ρlρl+1(1 − mlml+1)]

− µ̃

z

z∑
l=1

ρl +
εW

z
(ρ1 + ρz) (2.9)

where the first two terms on the right-hand side of (2.9) represent the entropic contribution to the
intrinsic free-energy functional. The contribution of intermolecular interactions is accounted
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for by the third and fourth terms, whereas the fifth one arises because our system is coupled
to an (infinitely large) reservoir of matter maintained at fixed µ̃ and T . The last term in (2.9)
stands for the interaction of the (formally confined) mixture with two solid substrates located
at l = 1 and z, respectively. The term proportional to ρl ln 2 in (2.9) represents a trivial
entropic contribution because molecules of both mixture species can always be distinguished
on account of their different ‘colour’.

3. Thermodynamic aspects

3.1. Phases and phase equilibrium

Based upon the explicit expression for the grand-potential density given in (2.9) we are now
in a position to address the question of phase equilibrium. Generally speaking, the condition
for coexistence between any two phases can be stated as

ωα(T, µ̃αβ) = ωβ(T, µ̃αβ) (3.1)

for a given temperature T , where ωα(T, µ̃αβ) is an abbreviation for the grand-potential density
ω(T, µ̃αβ )|ρα,mα of a specific (globally or meta-) stable configuration (i.e.,phase) characterized
by ρα and mα (see below). For fixed temperature, (3.1) determines the chemical potential
µ̃αβ at which the phases coexist. Because ω represents a complex energy hyperplane in
thermodynamic state space it is conceivable that it has many local minima represented by the
set {ρi ,mi }. Most of the pairs of phases complying with (3.1) are, however, only metastable
at coexistence. The pair representing the thermodynamically stable phases at coexistence is
the one satisfying

ωα(T, µ̃αβ) = min
γ

ωγ (T, µ̃αβ) (3.2)

in addition to (3.1).
In general, a range of temperatures exists over which the set {ρα,mα} satisfies

equations (3.1) and (3.2) simultaneously. Since both µ̃αβ, T ∈ R, it will prove convenient
to introduce the notion of a line µ̃αβ(T ) in thermodynamic state space (i.e., the coexistence
line) as the set of points {µ̃αβ, T } obtained as a solution of (3.1) subject to the constraint posed
by (3.2). The coexistence line therefore represents a line of discontinuous (i.e., first-order)
phase transitions between phases α and β as long as {ρα,mα} �= {ρβ,mβ}, that is as long as
the two phases are morphologically different. Moreover, we define as a phase diagram the
union of all coexistence lines, that is

µ̃x(T ) =
⋃
α,β

µ̃αβ(T ). (3.3)

Henceforth we shall use the notation µ̃∞
x (T ) to distinguish the bulk phase diagram from those

where wetting films may form as thermodynamically stable phases on account of the presence
of a solid substrate. Several of the phase diagrams presented in this work exhibit isolated
points at which

µ̃tri = µ̃αβ(Ttri) = µ̃βγ (Ttri) = µ̃αγ (Ttri) (3.4)

holds, describing coexistence between three thermodynamic phases α, β, and γ at a triple
point (µtri, Ttri).

Because we restrict ourselves to symmetric mixtures, a demixed A-rich phase cannot be
distinguished from a demixed B-rich phase. This symmetry is reflected by the symmetry of
ω in (2.9) with respect to the transformation m −→ −m. Therefore, the term ‘demixed’
always refers to a situation where a phase bearing a surplus of one component coexists with
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a phase in which the composition is dominated by molecules of the other component. In
addition, continuous phase transitions from mixed to demixed phases are critical in the sense
that coexistence between the participating (indistinguishable) demixed phases becomes critical.
The set of state points for which this is the case may be perceived as a line of critical points,
which we refer to as a λ-line in accord with conventional terminology [42].

3.2. Coexisting mixed liquid and gas bulk phases

We begin by applying the above considerations to a situation in which mixed liquid and gas
bulk phases coexist. According to section 2.2, and because of the symmetry inherent in our
model mixture (see (2.3)), this implies m = 0 for both phases regardless of T . It is then easy
to verify from the expression for the grand-potential density given in (2.9) that

ω(T, µ) = kBT [ρ ln ρ + (1 − ρ) ln(1 − ρ)] + 3ερ2 − µρ (3.5)

where

ε = εAA + εAB

2
. (3.6)

Equation (3.5) is derived from (2.9) because in thermodynamic equilibrium and in the absence
of external fields (i.e., for εW = 0) symmetry dictates that all elements of the vector ρ have to
assume the same value ρ. In (3.5),

µ = µ̃ + kBT ln 2 (3.7)

is an auxiliary chemical potential which we introduce to conveniently eliminate the trivial
entropy contribution. From (3.5) it is then straightforward to verify that the critical temperature
and chemical potential are given by [43]

T +
c = kBTc

|ε| = 3

2
(3.8)

µ+
c = µc

|ε| = −3. (3.9)

The coexistence line between mixed (M) liquid and gas (G) in the bulk can therefore be mapped
onto that between pure bulk liquid and gas, where the mean intermolecular attraction between
a pair of fluid molecules is given by ε. Hence, the coexistence line µ∞

GM = −3|ε| (see table 1)
will always be a horizontal line parallel to the T axis. In this sense ε determines a sensible
‘natural’ energy scale for mixed liquid and gas phases. Any deviations of µ∞

GM(T ) from −3|ε|
can therefore be attributed to deviations from perfect miscibility of the pure components.
Consequently, we shall henceforth express the chemical potential and εW in units of |ε|;
temperature will be cast in units of |ε|/kB. We refer to this set as dimensionless (i.e., ‘reduced’)
variables identified by the plus symbol (+). A quantity like εAB, on the other hand, will be
expressed in units of |εAA| following our previous practice [27, 41]. To distinguish the former
set of dimensionless variables from the latter we shall use an asterisk (∗) as superscript for εAB

given in units of |εAA|. From this definition and (3.6) it is easy to verify that the transformation
between both energy scales is effected by x∗ −→ x+ = f x∗, where

f = 2

1 + |ε∗
AB| . (3.10)
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–3.2

–3.1

–3.0

–2.9

0.4 0.8 1.2 1.6

T +

cep

demixed
liquid mixed liquid

gas

µ∞
GD (T) µ∞

GM (T)

µ+

TcTw metastable

Figure 1. Bulk phase diagram for |ε∗
AB| = 0.70, where metastable gas-mixed liquid [µ∞

GM(T )]
and gas-demixed liquid coexistence lines [µ∞

GD(T )] are also indicated; (——) line of discontinuous
phase transitions ending at the gas-mixed liquid critical point µ+

c = −3, T +
c = 3

2 ; (· · ·) (critical)
λ-line starting at the critical end point (cep) µ+

cep = −3.0, T +
cep � 0.99 and separating mixed

and demixed phases through continuous phase transitions. The hypothetical wetting temperature
Tw � 0.5 (see the text).

Table 1. Notation to identify phases Pα .

α Nature of phase

G Bulk gas
L Pure bulk liquid
M Mixed bulk liquid
D Demixed bulk liquid
k Pure film of k layers
mk Mixed film of k layers
dk Demixed film of k layers

4. Wetting of solid surfaces

4.1. Phenomenological approach

The discussion in section 3 now enables us to treat wetting and layering phenomena as substrate-
induced phase transitions. Intuitively, one thus expects the fluid–substrate attraction to become
particularly important. To see the latter let us briefly elaborate on a simple phenomenological
argument.

Consider a sessile droplet of liquid on a solid substrate. Its contact angle θ is determined
by the Young–Dupré equation [44]

cos θ = σgs − σls

σgl
(4.1)

where σi j is the interfacial tension between gas (g), liquid (l), and solid (s) phases (see
figure 1(a)).

To obtain a rough estimate for the set {σi j}, simple heuristic energetic arguments may be
invoked. Consider the following Gedanken experiment by which we introduce an auxiliary
plane in a hypothetical, infinitely large body of liquid without interfaces. We then remove that
portion of liquid above the plane. This creates a liquid–gas interface by breaking ‘bonds’ (i.e.,
cutting off interactions) between molecules across the newly formed interface. As a result the
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free energy of the now semi-infinite remainder of liquid will increase by an amount

σgl � 1
2 ρ2

liqεliq (4.2)

for sufficiently low temperatures where one may safely assume entropic contributions to be
negligible. In (4.2), ρliq is the density in the semi-infinite liquid slab and εliq is a measure of
the strength of attraction between a pair of liquid molecules. Note that no distinction is being
made between pure fluids and (multicomponent) mixtures.

To create a solid–liquid interface we proceed as before, that is we introduce a second
auxiliary plane in the liquid, and remove the portion of liquid below that plane, but this time
replace it by solid which, in turn, lowers the (free) energy by approximately ρliqεW. Thus,

σls � 1
2 ρ2

liqεliq − ρliqεW. (4.3)

For sufficiently low temperatures it seems fair to assume that the density of the gas phase
essentially vanishes. Hence,

σgs � 0. (4.4)

With the aid of equations (4.2)–(4.4) one obtains from (4.1)

cos θ � 2

ρliq

εW

εliq
− 1. (4.5)

Hence, from (4.5) we expect complete wetting (i.e., cos θ = 1) to occur if

εW � ρliqεliq < 0, (4.6)

that is complete wetting depends crucially on the relative strengths of fluid–fluid and fluid–
substrate attraction (see section 5.1).

4.2. The limit of vanishing temperature

4.2.1. Bulk phases. In the limit of vanishing temperature (i.e., for T = 0), (2.9) permits us to
substantiate (4.6) since phase equilibria can be treated analytically. As we already showed in
section 3.2, ε may be viewed as a natural energy unit for the coexistence between mixed liquid
and gas bulk phases (see table 1). Unfortunately, this is not so for the coexistence between
demixed liquid (D) and gas bulk phases. The simple reason is that for a demixed liquid m �= 0.
However, since one is still dealing with the bulk, symmetry still dictates that m can be replaced
by z times a single value m which simplifies the treatment of ω in (2.9) somewhat. However,
m depends on the thermodynamic state such that µ∞

GD(T ) (see table 1) is not constant like
µ∞

GM(T ) but depends in an a priori unpredictable manner on T . Fortunately, some insight can
still be gained in the limit T = 0 where ρ = 0, 1 and m = ±1, thus enabling an analytic
solution of (3.1) for various pairs of coexisting phases.

We begin with coexisting gaseous and demixed liquid phases. From (2.9) and (3.1) we
obtain

ωG = 0 = −µGD + 3εAA = ωD(µGD) (4.7)

from which µ∗
GD = −3 follows without further ado. In (4.7) we dropped the argument T = 0

and realized that in this limit µ̃ = µ (see (3.7)). In (4.7) we also used the fact that, for T = 0,
the density of the gas phase vanishes, and hence ωG = 0. It is instructive to convert µGD to
units of |ε|, that is to ‘natural’ units of µGM. With the aid of (3.6) we readily obtain

µ+
GD = 2µ∗

GD

1 + |ε∗
AB| = − 6

1 + |ε∗
AB| , (4.8)
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that is for T = 0 and |ε∗
AB| � 1,

µ+
GD � µ+

GM = −3 (4.9)

where the equality holds if the binary mixture degenerates into a pure liquid where all
interactions are the same (i.e., εAA = εBB = εAB). Therefore, for |ε∗

AB| < 1 gas always
coexists with a demixed liquid phase, rendering the mixed phase metastable.

4.2.2. Wetting films. Turning now to a microscopic treatment of thin films adsorbed on a
solid substrate we focus first on coexistence between gas and mixed monolayer film. For a
monolayer film z = 1, ρ1 = 1 and ρ0 = ρ2 = 0. From (2.9) we therefore have

ωm1(µ) = εAA + εAB + εW − µ (4.10)

which follows because for a mixed monolayer film at T = 0, ρ1 = 1 and m1 = 0. Therefore,
the previous expression gives (ωG = 0)

µ+
Gm1 = −2(1 + |ε∗

AB| + |ε∗
W|)

1 + |ε∗
AB| (4.11)

where we also employed equations (3.1) and (3.6). Similar reasoning for a demixed monolayer
film where m1 = ±1 gives

µ+
Gd1 = −2(2 + |ε∗

W|)
1 + |ε∗

AB| , (4.12)

that is for T = 0 we are effectively dealing with a pure monolayer film composed entirely of
molecules of either species because

µ+
Gd1 � µ+

Gm1 (4.13)

where the equality holds for |ε∗
AB| = 1, that is if the binary monolayer mixture degenerates

(formally) into a pure phase.
Turning now to coexistence between mixed films comprising k and k ′ = k + 1 layers,

respectively, we obtain from (2.9)

ωmk(µ) = ε

z
(3k − 1) − µ

z
+

εW

z
. (4.14)

Changing k → k ′ in this last expression and invoking again (3.1) we obtain for the chemical
potential at coexistence between these films

µ+
mkmk′ = −3 (4.15)

which is not only independent of the presence of a solid substrate but resembles precisely µ+
GM.

We are thus confronted with a situation where the solid substrate has no influence on the phase
equilibrium between thicker films, whereas by altering εAA or εW, µGm1 can be shifted at our
demand (see (4.11)). This implies that for T = 0 a one-phase region for mixed monolayer
films exists whose width can be altered by changing εAB and/or εW. The fact that only the
gas-mixed monolayer phase coexistence depends on εW is, of course, a feature caused by the
short-range character of the fluid–substrate potential governing our model. However, (4.11)
and (4.15), together with the analysis put forth in section 3.2, lead us to conclude that for T = 0
complete wetting by a macroscopically thick mixed film would be possible in principle.

Consider next the situation in which demixed films of k and k ′ = k + 1 layers coexist. A
straightforward calculation along the lines of the above analysis eventually yields

µ+
dkdk′ = − 6

1 + |ε∗
AB| . (4.16)
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Comparison of this last expression with (4.15) shows that one can promote coexistence between
demixed films of k and k + 1 layers relative to equally thick mixed ones by lowering |εAB|. For
reasons given above µdkdk′ turns out to be independent of εW for T = 0.

From (4.15) and (4.16) we thus obtain

µ+
dkdk′ � µ+

mkmk′ (4.17)

where the equality again holds for the limiting case of a pure fluid, that is for |ε∗
AB| = 1.

Equation (4.17) leads us to conclude that for T = 0 complete wetting occurs where, however,
the wetting film is demixed rather than mixed, the latter being always metastable regardless
of its thickness. Comparison of equations (4.13) and (4.17) also indicates that for T = 0 gas
coexists with an infinite number of progressively thicker demixed films and a demixed bulk
phase. Thus, the point T = 0, µ+ = −6/(1 + |ε∗

AB|) constitutes a multiphase point [23].

4.3. Scaling laws

Consider now a symmetric binary mixture where, for example, |ε∗
AB| = 0.7. Because of this

choice of εAB the mixture exhibits a moderate tendency towards liquid–liquid phase separation.
In other words, for suitably chosen thermodynamic states mixed and demixed phases may arise
in addition to a gaseous phase. A typical bulk phase diagram is presented in figure 1. It reveals
that for temperatures above that of the critical end point (cep), the bulk phase diagram is
indistinguishable from that of a pure fluid apart from the effective depth ε of the attractive
well (see (3.6) and discussion in section 4.2). Hence, the mixture has a hypothetical wetting
temperature Tw which, for a suitable fluid–substrate attraction, equals that of a corresponding
pure fluid (in units of ε) as shown in figure 1. The wetting temperature is hypothetical because
for T < Tcep, µ∞

GM(T ) > µ∞
GD(T ), and therefore mixed bulk phases are metastable with respect

to demixed ones.
It is then instructive to consider the growth of wetting films along µ∞

x (T ) as T → T −
cep.

In the immediate vicinity of the critical end point useful scaling laws have been derived for
the growth of wetting films from which a number of interesting conclusions may be drawn
concerning the physical nature of these films. For the subsequent discussion it is therefore
sensible to introduce

�µ(τ) = µ∞
x (τ ) − µcep (4.18)

τ = Tcep − T

Tcep
. (4.19)

As one approaches the critical end point along the coexistence line µ∞
GD(τ ) (see figure 1) the

thickness l of an adsorbed film will diverge logarithmically, that is [5, 6]

l(�µ, τ) ∝ − ln[�µ(τ)]. (4.20)

However, along the coexistence line and in the immediate vicinity of the critical end point one
also has [45–48]

�µ ∝ τ 2−α (4.21)

where α is the relevant critical exponent and therefore (see equations (4.20), (4.21))

l(τ ) ∝ − ln τ. (4.22)

Hence, the thickness of the adsorbed film remains finite for all T < Tcep and diverges
comparably weakly as τ → 0+. Upon approaching the critical end point (i.e., as τ → 0+

along µ∞
x (T )) the correlation length of composition fluctuations ξcomp, on the other hand,

diverges much faster according to

ξcomp ∝ τ−ν . (4.23)



4772 D Woywod and M Schoen

–3.010

–3.005

–3.000

–2.995

0.4 0.8 1.2 1.6

T + T +

T + T +

Tw Tc

µ+

(4)
(5)

(a)
–3.010

–3.005

–3.000

–2.995

0.4 0.8 1.2 1.6

Tw

µ+

Tc

(1) (2)

(3)
(4)

(5)

I II III IV

–3.150

–3.100

–3.050

–3.000

0 0.4 0.8 1.2 1.6

 Tw=0
µ+

Tc

(1)

(2)

(3)
(4)

(c)

(b)

(d)
–3.4

–3.2

–3.0

0 0.4 0.8 1.2 1.6

 Tw= 0
µ+

Tc

(1)

(2)

(3)(4)

Figure 2. Phase diagrams for |ε∗
AB| = 1.0. The numbers (n) indicate coexistence lines between

films of n − 1 and n layers where n − 1 = 0 =̂ G (see table 1). (a) |ε+
W| = 0.82. (b) |ε+

W| = 0.84;
vertical dashed lines represent isotherms for which the excess coverage is plotted in figure 3. (c)
|ε+

W| = 1.00; in this case T +
w = 0. (d) |ε∗

W| = 1.40. In the bulk, gas is thermodynamically stable
for µ+ < µ∞

x
+ = −3, T + � Tc = 3

2 . If, for this temperature range, µ > µ∞
x then the liquid is

thermodynamically stable.

Therefore, a range of temperatures T ′ � T � Tcep exists such that ξcomp � l(τ ) along µ∞
x (T ),

where the equality holds for T = T ′. In other words, the size of A- or B-rich domains forming
side by side becomes much larger than the actual thickness of the adsorbed film for T � Tcep.
This, in turn, implies that along µ∞

GD(T ) adsorbed films always become mixed prior to the
bulk critical end point.

However, the above analysis bears an ostensible contradiction. On account of the scaling
relation (4.22), Tw � Tcep because the film thickness diverges to infinity at the critical end point
(and, of course, for all higher temperatures at bulk phase coexistence). On the other hand, the
discussion in section 4.2 provided clear evidence for complete wetting at T = Tw = 0. In this
regard a key is that for T = 0 the solid surface is wet by a demixed liquid phase whereas the
scaling prediction implies formation of mixed film phases for T � Tcep along the coexistence
line. We shall return to this point in section 5.2.3 below.

5. Results

5.1. Pure fluids

It is instructive to begin a more detailed discussion with pure fluids which are realized for
|ε∗

AB| = 1. Consider first a relatively weak fluid–substrate attraction of |ε∗
W| = 0.82. The

plots in figure 2(a) show the gas–liquid coexistence line µ∞+
GL = −3 ending at the critical
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point whose temperature T +
c = 3

2 . In addition, films of more than four layers turn out to be
thermodynamically stable, as one can see from the plot in figure 2(a). The coexistence lines
between films of n − 1 and n layers start at a layering temperature Tl(n) and end at a layering
critical temperature Tlc(n), both of which depend on the number of layers n. In terms of the
layering temperature, the wetting temperature Tw may then be defined as the temperature at
which an adsorbed film becomes macroscopically thick, that is

Tw = lim
n→∞ Tl(n). (5.1)

For the special case |ε∗
AB| = 0.82 the plot in figure 2(a) shows that the Tl are almost independent

of n, that is all coexistence lines start at nearly the same temperature and are fairly short.
This picture changes if |ε+

W| increases slightly, as figure 2(b) reveals. Additional
coexistence lines for mono-, bi-, and trilayer phases arise. One also notices from the plot in
figure 2(b) that the shift between neighbouring layering temperatures�Tl(n) ≡ Tl(n+1)−Tl(n)

rapidly diminishes with increasing n so that the limit in (5.1) is expected to exist. In addition,
Tlc(n) increases with n, where the roughening temperature is defined as

Tr = lim
n→∞ Tlc(n). (5.2)

As one approaches Tr, fluctuations of film thickness grow enormously such that the film–gas
interface becomes ‘rough’ in the sense that individual layers parallel to the solid surface can
no longer be discerned.

In our model Tr = Tc and hence Tw < Tc, so that we indeed observe layering transitions
and complete wetting according to the assertions by Binder and Landau (see the middle plot
in figure 2 in [23]). These same authors point out that prewetting (i.e., coexistence between
molecularly thin and thick films) can be observed only if Tr < Tw. On account of short-
range fluid–substrate interactions this latter inequality does not hold for our model. Thus, our
model does not allow for prewetting transitions due to the somewhat unrealistic fluid–substrate
interactions. However, prewetting transitions are of no concern here.

Nevertheless, our model mimics correctly both partial and complete wetting scenarios as
well as layering transitions. This becomes particularly apparent in plots of the excess coverage
� defined as

� =
∫ ∞

0
dz′ [ρ(z′) − ρbulk] = �

z∑
k=1

ρk − �zρbulk ≈ ρliql (5.3)

plotted in figure 3, where ρbulk(T, µ) is the bulk gas density for a given T and µ. Equation (5.3)
reflects the discrete nature of our model and shows that � is proportional to the thickness l of
the adsorbed film. Hence, � is of the order of k for adsorbed films comprising k molecular
layers, weighted, however, by the mean density of the adsorbed film ρliq. In figure 3, � is
calculated as a function of chemical potential for four isotherms identified in figure 2(b). For
the path labelled I in figure 2(b), � in figure 3 exhibits only a weak dependence on µ up to bulk
gas–liquid coexistence (i.e., µ − µ∞

x = 0). The excess coverage remains below 1, indicating
that we have submonolayer coverage of the solid surface up to bulk gas–liquid coexistence
(i.e., for µ − µ∞

x (TI) → 0−). Similarly, for the path labelled II, � depends only weakly on µ.
However, the final value of � at µ − µ∞

x (TII) � 0 is closer to 1, indicating that a monolayer
forms on the substrate, as one would expect from the plot in figure 2(b). Since isotherm II
does not intersect the coexistence line µG1(T ) (see table 1) in figure 2(b), � is a continuous
function of µ.

If, on the other hand, an isotherm intersects one of the layering coexistence lines in
figure 2(b), � exhibits a discontinuity. For example, along the path labelled III in figure 2(b),
µG2(T ) is crossed by the isotherm. Consequently, � changes discontinuously but remains
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Figure 3. Excess coverage � (see (5.3)) as a function of the chemical potential µ relative to
the chemical potential at bulk gas–liquid coexistence µ∞

x
+ along the isotherms I–IV identified in

figure 2(b).

finite up to bulk gas–liquid coexistence. The terminal value � � 1.4 in figure 3 reflects
adsorption of an imperfect bilayer film (i.e., 1 < lρliq < 2). All three isotherms, I, II, and III,
comport with partial wetting.

Complete wetting, on the other hand, is observed along isotherm IV in figure 2(b),
where the temperature exceeds Tw. Again a layering transition occurs, first reflected by the
discontinuity in � at µ+ − µ∞

x
+ � 10−3 in figure 3 followed by a divergence of � to infinity

as one approaches the bulk coexistence line, that is for µ − µ∞
x → 0−. However, figure 2(b)

reveals that path IV is supercritical with respect to both Tlc(2) and Tlc(3). The continuous but
rather pronounced increase of � for chemical potentials below µ+ − µ+

x
∞ � 9 × 10−4, where

the first layering transition arises, reflects this supercriticality. Similar effects have also been
observed in pure fluids, as one can see in figure 1(b) of the work by Ball and Evans [38].

If the fluid–substrate attraction increases further, Tw → 0, as the plot for |ε+
W| = 1.0 in

figure 2(c) shows. Layering coexistence lines now start at T = Tw = 0, and one-phase regions
of adsorbed films widen considerably at least for mono- and bilayer films. Further increase
of |εW| causes the coexistence line for the monolayer film to become detached from the bulk
coexistence line. For example, for |ε+

W| = 1.4, µ+
G1(0) � −3.4, whereas µ+

kk′ (0) = −3.0
for k � 1 (k ′ = k + 1) regardless of the magnitude of εW. This effect is only observed for
monolayer films, as reflected by equations (4.11) and (4.15). However, we emphasize that
Tw = 0 for |ε∗

AB| = 1.0 is predicted by the phenomenological expression (4.6) because in
the limit T = 0, ρliq = 1, and hence complete wetting should occur for all temperatures
0 � T � Tc if εW � εliq = εAB (see figure 2(c)). The vanishing of the wetting temperature in
the limit of sufficiently attractive solid substrates has also been reported by Binder and Landau
(see the uppermost plot in figure 2 of [23]).

5.2. Binary mixtures

5.2.1. The case |ε∗
AB| = 0.7. To study the wetting of solid surfaces by binary mixtures we

performed a sequence of calculations in which we investigate the wetting of a solid substrate
as a function of both εAB and εW. We begin with a mixture for which |ε∗

AB| = 0.7 as before,
and plot µx(T ) for |ε+

W| = 0.84 in figure 4(a).
For this system, Tw > Tcep according to the definition of Tw given in (5.1), and the layering

coexistence lines for one to three layers are fairly short. In figure 4(a) a number of isotherms
I–III are identified for which � is plotted in figure 5(a). As expected, � is small and depends
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Figure 4. As figure 2 but for |ε∗
AB | = 0.7. (a) |ε+

W | = 0.84; (b) |ε+
W | = 1.00; (c) |ε+

W | = 1.20, where
the inset is an enlargement of that portion of the figure bounded by a rectangle; (d) |ε+

W| = 2.00,
where the dotted line represents the surface λ-line starting at T +

cep(1) � 0.66, µ+
cep(1) � −3.22

separating demixed from mixed monolayer films. Note the different scales used on the abscissae
of (a)–(d).

only weakly on µ as far as isotherm I is concerned. As before in figure 3 we observe only
submonolayer coverage along the isotherm TI when µGD(T ) is approached. This is because
we are at a temperature below Tw and Tlc(1). The path labelled II in figure 4(a), on the other
hand, approaches µ∞

x (T ) along an isotherm above Tlc(1). Therefore, the corresponding plot of
� in figure 5(a) exhibits a somewhat more pronounced increase with increasing µ, especially
close to bulk gas–liquid coexistence (i.e., for −0.02 < µ+ − µ∞

x
+(T ) � 0). However, along

paths I and II, � remains continuous and finite until one reaches bulk gas–liquid coexistence.
Therefore, these isotherms comport with a partial wetting scenario.

This situation changes along path III in figure 4(a), where the temperature of the isotherm
exceeds Tw. In addition, layering coexistence lines coincide approximately with µ∞

x (T ) for
films accommodating four or more layers over the range Tw � T � Tc. Therefore, � in
figure 5(a) is a monotonic function of µ diverging at bulk gas–liquid coexistence, that is in
the limit µ − µ∞

x (TIII) → 0. Since this divergence may be interpreted as the formation of a
macroscopically thick film, path III in figure 4(a) corresponds to a complete wetting scenario.

Turning now to a more attractive substrate, a plot of µ∞
x (T ) in figure 4(b) shows that

Tw = Tcep for ε+
W = 1.0, as predicted by the scaling arguments of section 4.3. Coexistence lines

for films comprising between one and four layers also shown in that figure illustrate that for the
same number of layers the coexistence lines are significantly longer here compared with their
counterparts plotted in figure 4(a). We consider two isotherms labelled I and II in figure 4(b).
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Figure 5. Excess coverage � (solid lines, left ordinate) as a function of µ+ − µ∞
x

+ and effective
miscibility M (see (5.4), dotted lines, right ordinate) for isotherms identified by roman numerals
in the corresponding plots of figures 4(a)–(c).

The one labelled I is characterized by TI < Tw, whereas the one labelled II approaches µ∞
x (T )

along a temperature slightly above Tw. Isotherm I intersects µGm1(T ). Consequently, the
parallel plot of � in figure 5(b) exhibits a discontinuity at µ − µ∞

x (T ) � −0.016. Since
TI < Tw, we observe only partial wetting, that is � remains finite until we reach bulk gas–
liquid coexistence. Isotherm TII, on the other hand, crosses µmkmk′ (T ) for k = 1, 2k ′ = k + 1
along TII. The corresponding plot of � in figure 5(b) thus exhibits two discontinuities at
µ+ − µ∞

x
+(T ) � −0.108 and −0.011 referring to layering transitions, and then diverges as

µ − µ∞
x (T ) → 0− according to a complete wetting scenario because TII > Tw such that

an infinite number of layering coexistence lines is crossed by the isotherm. That the films
are, in fact, mixed is revealed by M = 0 up to bulk gas–(mixed) liquid coexistence, where
M ∈ [−1, 1] is a density-independent measure of decomposition of adsorbed films, that is

M = 1

�

∫ ∞

0
dz′ [{ρA(z ′) − ρA

bulk} − {ρB(z ′) − ρB
bulk}]

= �

�

z∑
k=1

[ρA
k − ρB

k ] − z�

�
[ρA

bulk − ρB
bulk] (5.4)

where � is given by (5.3) [41]. Similar to ml defined in (2.7), M < 0, if the adsorbed film is
B-rich, whereas it is A-rich if M > 0 in the sense of the discussion in section 3.1.

If |εW| increases further, the plots in figure 4(c) reveal another change in the overall
phase behaviour. For example, if µ is sufficiently low, monolayer films may form which are
either mixed or demixed, the two being separated by a λ-line starting at a surface critical end
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point for which T +
cep � 0.66 and µ+

cep � −3.22. Considering the isothermal path labelled
I in figure 4(c), the parallel plots of � in figure 5(c) indicate a layering transition between
gas and monolayer phases at µ+ − µ∞

x
+(TI) � −0.088. The corresponding plot of the

effective miscibility M also shown in figure 5(c) reveals that the newly formed monolayer
is demixed because M � 0.56 after the phase transition occurred. Along the isotherm TII we
first have a layering transition from gas to monolayer for a more negative chemical potential
µ+ − µ∞

x
+(TI) � −0.125. However, this time the newly formed monolayer is mixed, as

reflected by M = 0 in figure 5(c). As one continues to move to more positive chemical
potentials along the isotherm TII one eventually crosses the surface λ-line separating mixed
from demixed monolayer films (see the inset in figure 4(c)). During this continuous phase
transition the thickness of the adsorbed film does not change appreciably, as one can see from
figure 4(c), where � � 0.98 ≈ constant for µ+ −µ∞

x
+(TII) � −0.022 along path II. However,

as one crosses the λ-line, M rises to more positive values, indicating that the monolayer now
becomes (weakly) demixed (see figure 5(c)). Initially, when the isotherm TII intersects the
λ-line in figure 4(c),

dµ

dM

∣∣∣∣
T =TII

= 0 (5.5)

as one would expect for the change of an order parameter at a continuous phase transition.
However, both isotherms correspond to partial wetting conditions because � remains finite all
the way down to µ − µ∞

x (T ) → 0. If |εW| reaches a sufficiently large value, this general
scenario does not change significantly except for bilayer films, which also appear as mixed
and demixed phases (see figure 4(d)). We shall return to this issue shortly in the subsequent
section 5.2.2, and refrain from presenting any plots at this point in the interests of brevity.

5.2.2. The case |ε∗
AB| = 0.5. If we lower the attraction strength between a pair of unlike

molecules to |ε∗
AB| = 0.5, the topology of µ∞

x (T ) changes completely from the case |ε∗
AB| = 0.7

for which the bulk phase diagram is displayed in figure 4. The most significant change is that
for |ε∗

AB| = 0.5 mixed and demixed liquid phases are separated by a coexistence line µDM(T )

instead of a λ-line (see figure 6). As a consequence the critical end point visible in figure 4
has been transformed into a triple point at which µ∞

x (T ) in figure 6 bifurcates into µDM(T )

and µGM(T ). Therefore, both demixed and mixed liquid phases coexist with a gaseous phase
at a quadruple point. The temperature of the quadruple point coincides with the wetting
temperature Tw in the present case.

For |ε+
W| = 1.3 the plot in figure 6(a) shows that the one-phase region of a demixed

monolayer is triangular shaped and enclosed by various other coexistence lines. Let us again
consider two isothermal paths labelled I and II in figure 6(a). Along TI we cross µGd1(T ) before
eventually reaching the bulk coexistence line. Consequently, the parallel plot of � in figure 7
exhibits a single discontinuity at µ+ − µ∞

x
+(TI) � −0.024. At µ+ − µ∞

x
+(TI) � −0.024, M ,

too, exhibits a discontinuous change and increases to M � 0.79, indicating that a demixed
monolayer has formed. Along path II (see figure 6(a)) two coexistence lines are crossed.
At the first intersection at µ+ − µ∞

x
+(T ) � −0.066, � changes discontinuously to a value

of about � � 0.64. As µ increases further � keeps rising, too. However, eventually a
second discontinuity at µ+ − µ∞

x
+(T ) � −0.031 is observed, at which � assumes a value

of about 0.87. Hence, the initial monolayer film becomes a bit denser. Between the first and
second discontinuity M = 0, indicating that the monolayer film is mixed. At the second
discontinuity, however, M rises to a value of about 0.53, and therefore the initially mixed
monolayer phase becomes demixed (i.e., A-rich). Since � along TI and TII remains finite all
the way to µ − µ∞

x (TII) → 0−, we are again dealing with cases of partial wetting.
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Figure 7. As figure 5 but for the two isotherms specified in figure 6(a).

As |ε+
W| increases to 1.4 the one-phase region of the demixed monolayer film widens

considerably, as the plot in figure 6(b) shows. Between mixed and demixed monolayer films,
continuous as well as discontinuous phase transitions are possible. This is because a surface
tricritical point appears at T +

tcp � 1.06 and µ+
tcp � −3.31. Between the tricritical point and the

bulk coexistence curve, a new surface λ-line arises, as the plot in figure 6(b) shows.
Further increase of |εW| causes the monolayer coexistence lines to become even more

‘detached’ from the bulk phase diagram, as the plots for |ε+
W| = 2.0 in figure 6(c) show.

Hence, the λ-line also visible in figure 6(c) becomes longer compared with its counterpart in
figure 6(b). In addition to these, somewhat less spectacular features, a novel demixed bilayer
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Figure 8. As figure 2, but for |ε∗
AB| = 0.3. (a) |ε+

W| = 1.6; also shown is the (metastable)
coexistence line µ∞

GM(T ). (b) |ε+
W| = 2.0; the inset is an enhancement of the small rectangular

region showing that an (infinite) number of layering transitions below the bulk coexistence line
exist.

film arises as a thermodynamically stable phase in figure 6(c). Unlike the bilayer films for
|ε∗

AB| = 0.7, mixed bilayers are presently not observed. The appearance of such multilayer
films will become a key issue in the next section 5.2.3.

5.2.3. The case |ε∗
AB| = 0.3. We begin with a fluid–substrate attraction |ε+

W| = 1.6 for
which we plot µ∞

x (T ) in figure 8(a). The attraction between unlike molecules of both species
|ε∗

AB| = 0.3 is already sufficiently weak to promote a strong tendency of the bulk mixture to
phase separate. This is indicated in figure 8(a), where we plot the coexistence line between
the metastable gas and mixed liquid phases which turns out to be ‘buried’ deep inside the one-
phase region of the demixed liquid phase, thus being entirely inaccessible from an equilibrium
perspective. That is, with respect to µ∞

x (T ) plotted in figure 8(a), µGM(T ) turns out to be
metastable. Consequently, the critical end point characteristic of the previously discussed
cases has disappeared. Instead a bulk tricritical point (tcp) is visible in the plot of figure 8(a),
where both the demixed liquid and the gas become critical. In addition, only a demixed
monolayer film is adsorbed on the solid substrate.

If we now increase the fluid–substrate attraction to |ε+
W| = 2.0, the one-phase region of

the demixed monolayer film widens. The coexistence line µGd1(T ) ends at a new tricritical
point located at T +

tcp(1) � 1.58, µ+
tcp(1) � −3.65 (see figure 8(b)). At this tricritical point

a surface λ-line starts separating the gas from the demixed monolayer. However, the inset
in figure 8(b) shows that a number of additional layer-coexistence lines arise, too. Consider
now the isotherm labelled I in figure 8(b). The corresponding plot of � in figure 9 exhibits a
discontinuous increase at µ+ −µ∞

x
+(TI) � −0.34, where the isotherm crosses the coexistence

line of the demixed monolayer film. That this film is, in fact, demixed is reflected by the
simultaneous pronounced, discontinuous increase of M to a value of about 0.65 (see figure 9).
As we move closer towards bulk gas–liquid coexistence along TI = 1.4, additional layering
transitions are visible in the plot of � which tends to diverge at bulk gas–liquid coexistence.
Because M increases discontinuously as well, the newly formed thicker films are even more
demixed.

Hence, in this case we have complete wetting of the solid substrate above T = 0 in accord
with the qualitative argument put forward in section 4.2.2, where we argued that on account
of decomposition at sufficiently low temperatures complete wetting should be possible along
the entire bulk coexistence line µ∞

GD(T ). On the basis of figures 4(b), 5(b), and 8(b), we
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coexistence lines where metastable and thermodynamically stable portions are represented by dotted
and full curves, respectively. Surface λ-lines starting at surface critical end points cep(n) have been
omitted for the sake of clarity.

are now also in a position to unravel the ostensible contradiction between the prediction of
complete wetting at temperatures below Tcep and the scaling argument sketched in section 4.3.
Comparing first µx(T ) in figures 4(b) and 8(b), we notice that increasing |εW| and lowering
|εAB| causes a complete change in topology of the phase diagram in that only demixed film or
bulk liquid phases are present in figure 8(b). Therefore, unlike µx(T ) plotted in figure 4(b),
the phase diagram shown in figure 8(b) does not exhibit a critical end point, and hence the
scaling argument becomes inapplicable to this situation. As a consequence no restrictions are
imposed on the location of Tw, in accord with our findings.

However, we notice from figures 4(b) and (c) that the layering temperatures may be lower
than Tcep. A more detailed analysis of the various layering coexistence lines provides a means
of understanding why Tw can never be lower than Tcep, in addition to the scaling argument of
section 4.3. A plot of µ∞

x (T ) in figure 10 illustrates that for |ε∗
AB| = 0.70 and |ε+

W| = 1.18 only
the gas–monolayer coexistence line is at chemical potentials lower than that of µ∞

GD(T ). Bi-
and trilayer coexistence lines have only certain parts below the bulk coexistence line, that is the
monolayer film is thermodynamically stable over the entire temperature range 0 � T � Tlc(1).
Thus, if one approaches the bulk coexistence line from below along an isotherm T < Tcep,
this isotherm will intersect only a finite number of layer coexistence lines and therefore �

cannot diverge to infinity as would be required in the case of complete wetting. Only for
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T � Tcep are all layer coexistence lines below the bulk coexistence line µGD(T ). Hence, if
one approaches µ∞

x (T ) an isotherm will intersect an infinite number of layer coexistence lines,
and consequently � diverges to infinity for all T � Tcep. In other words, the relative stability
of layering transitions with respect to µ∞

x (T ) determines the temperature range over which
one can expect complete wetting.

6. Discussion and conclusions

We have studied the wetting of nonselective, planar substrates by symmetric binary mixtures
using mean-field lattice density functional theory. By varying the attraction strength between
unlike molecules, εAB, and that between a molecule and the substrate, εW, we observe a rich
wetting behaviour. Through an analytical calculation of the chemical potential at coexistence
for mixed and demixed films of various thicknesses at T = 0 we identify two ‘natural’ energy
scales of our model. One is posed by the attraction between like molecules εAA and becomes
relevant if the adsorbed film demixes or if it consists of a pure fluid (i.e., for |ε∗

AB| = 1). The
other one, ε, arises in mixed films and depends on both εAA and εAB (see (3.6)).

Based on simple energetic arguments we derived a condition for complete wetting in the
limit of vanishing temperature (see (4.6)). In the case of a mixed film εliq = ε. For example,
if the binary mixture degenerates into a pure fluid (i.e., for |ε∗

AB| = 1) we expect the wetting
temperature to vanish if |ε+| = 1.0 on account of (4.6), which is confirmed by results plotted
in figure 2(c).

For |ε∗
AB| < 1, thermodynamically stable films always decompose for sufficiently

low temperatures. The transition between mixed and demixed films can be continuous or
discontinuous (see figure 4). Upon decomposition the energy scale posed by εliq = εAA

becomes relevant. However, |εAA| > |ε| such that the inequality stated in (4.6) may be
invalidated. To observe complete wetting by demixed films for T = 0 in this latter case, the
fluid–substrate attraction needs to be raised accordingly.

The key result of this work is that the wetting temperature Tw may vanish in the limits
|ε∗

AB| = 1 (pure fluid) and |ε∗
AB| → 0 (see figures 2(c) and 8(b)) if the fluid–wall attraction is

adjusted properly. In other words, in both cases we observe complete wetting if the gas–liquid
coexistence line is approached along any isotherm T � 0. Again, in the limit T = 0 the latter
is demonstrated analytically in section 4.2.

For intermediate values of εAB, however, Tw has a lower bound Tcep > 0, in accordance with
scaling-law predictions [45–48]. The existence of a lower bound Tw � Tcep can be rationalized
in terms of the dependence of the topology of µx(T ) on both εAB and εW. Focusing on the bulk
phase diagram first (i.e., for εW = 0) one realizes for a pure fluid, where |ε∗

AB| = 1, only gas
and liquid phases coexist along µ∞

x
+ = −3 and 0 � T � Tc. If |ε∗

AB| < 1, a critical end point
at a temperature Tcep arises, where a λ-line intersects µ∞

x (T ) such that mixed and demixed
liquid phases are separated by a line of continuous phase transitions. In this case µ+

GM = −3
only for T � Tcep, whereas µ+

GD(T ) � −3 for T � Tcep such that dµGD(T )/dT � 0 over this
temperature range. The coexistence line µGM ends at the critical point where T +

c = 3
2 , and

gaseous and mixed liquid phases become indistinguishable. As |εAB| decreases, Tcep shifts
to higher temperatures and is eventually transformed into a tricritical point (µtcp, Ttcp), where
coexisting mixed and demixed liquid become critical. Lowering |εAB| even more causes Tc to
vanish such that eventually only demixed liquid and gaseous phases coexist.

For intermediate values εAB, where Tcep < Tc, one may now introduce a planar substrate
surface with εW � 0. The discussion in section 4.2.2 showed that for T = 0 films
adsorbed on such a surface will demix spontaneously regardless of their thickness (see
equations (4.8), (4.15)) such that at T = 0 we have a multiphase point in the sense that there
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is no difference in stability between the demixed bulk liquid and adsorbed films of arbitrary
thickness. However, for infinitesimally larger temperatures T � 0, the demixed liquid bulk
phase turns out to be more stable than any film adsorbed on the solid substrate. Hence, we
have only partial wetting for T � 0.

As T increases along the layer coexistence lines each film exhibits a critical end point
Tcep(k), where a (surface) λ-line starts (see figures 4(c), (d), and 10). For T � Tcep(k), a
film of k layers turns out to be mixed because entropic contributions dominate energetic ones.
This is the easier the lower k is, such that limk→∞ Tcep(k) = Tcep. The mixed films eventually
become more stable than the demixed liquid bulk phase (see figure 10). Thus, one has layering
temperatures Tl(k), but only for finite k as long as T < Tcep. Consequently, there is no complete
wetting below the bulk critical end point, in accord with the scaling predictions summarized
in section 4.3.

The main observations of this work can thus be summarized as follows.

(i) Complete wetting of solid surfaces by mixed films occurs only for temperatures T � Tcep

regardless of εAB and εW. Both parameters do, of course, affect the specific location of
the critical end point.

(ii) If complete wetting occurs for arbitrary temperatures 0 � T � Tc, it requires demixed
films as an ineluctable prerequisite. However, such decomposition requires sufficiently
attractive substrates relative to the strength of the A–B attraction, that is sufficiently large
|ε+

W| or small |ε∗
AB|. However, such a choice of parameters is more likely to cause mixed

liquid bulk phases to be absent, so that a critical end point does not even exist. In this case
no restrictions are imposed in principle on the wetting temperature.

Our results are in qualitative agreement with those obtained earlier by Schmid and
Wilding [40]. For example, for a sufficiently large value of |εW| these authors report a
discontinuous change in film thickness accompanied with a change in its composition (see
figure 14 of [40]). This feature has also been observed here (see figures 6(a), 7, isotherm
II or figure 4(d)) where, however, the film thickness changes at most from mono- to bilayer
(see figure 4(d)) on account of the short-range attraction employed in this study. A much
larger increase in film thickness is observed by Schmid and Wilding in their grand canonical
ensemble Monte Carlo simulations. If |εW| becomes sufficiently large, Schmid and Wilding
observe a ‘weakening’ of the wetting transition (see figures 13, 14 of [40]). This effect is
also observed here. Consider, for example, the isotherm T = 1.05 in figures 6(b) and (c),
which is slightly below and above the tricritical point cep(1), respectively. Hence the order of
the layering transition changes from discontinuous to continuous along this isotherm as |ε+

W|
increases from 1.4 to 2.0. However, the reader should note that the present study goes beyond
that of Schmid and Wilding [40], who fixed |ε∗

AB| near 0.7 and varied only εW, whereas the
impact of the variation of parameters is investigated here.
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